- Author:
- Weiwei Ai <wai484@aucklanduni.ac.nz>
- Date:
- 2024-04-17 14:11:54+12:00
- Desc:
- Add CellMLV2 model and Parent 1992 Fig 3 data
- Permanent Source URI:
- http://models.cellml.org/workspace/b65/rawfile/690fadff9fbda39f32c006e60d59499765a4c784/Electrogenic cotransporter/data/Fig3_Parent1992_50mV.dig
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE engauge>
<Document VersionNumber="12.1" AxesPointsRequired="0">
<Image Width="910" Height="918"><![CDATA[AAAAAYlQTkcNChoKAAAADUlIRFIAAAOOAAADlggCAAAALxBbNQAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJzt3dG6ZDy3BtCyn77/W7YP6mu/RkUQMRNjHHWvVasqKPGaIoZxHD8AABDP/z3dAAAA2CaqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQf55uwO2GYfj+YxxHzQAAaEjnVdUpID5uSqhxmgQAEFyIqDoMw90BLkItU1oFADgkRFT9Kh7g6lxzP5SzIyRmAIBWBIqqZVUeG3o0ZyusAgDs6jOqRr6HyTAAAIBMIWYACBgoM4mbAAD36bOq+lU5ARuxCgBQVodRtXKlcxzH09f0FWUBABI6jKrVzIPm0UKpwioAwK4QY1W/mS/I06QebwkAAF8houodcuLmr+vvORMIJP5W0gUAKMIAgEvmqfTcGADDVQEAfum2qnrIZso8ESLHcRQ9AQBKUVU9eZU/8YbSKgBAEaJqSUIqAEBBBgBc4uYqAID7qKoepnQKAFCHqupJJ0a4AgBwiKh6l8wxAMYJAOxKlABa6UVzZuwG1kTVY3IerJU5ZZXiK8B1zd0bsO7822o/VCaq3ijRgcqpACc0neqmxjsEQL5uo+od59n5nUtmYbXpPheCeLaotrmn27Vv0vSK3Xy6ocwKu7qNqvfJ7yuVVOFup/emRMTMz759T1eXM97p+p/E0XTjoWMhJqsq2zUcOlvdHXWa/+JD73z03YCFYRjK5tT5ex4dbj6O42KP7uCMdAruR/8wyLIPfz3dEOCSKFXVR3LboZya8yc5nLjDdUXyx5VwuXk392Lkj50d4LoQVdXipgpHtPPpaO2B5lyvk/1KkIvK6LnLMuvyageOrvD+1gDwoD6j6lycdGhSPSjrxK602yHkZM0ib9KfOJ3tQtiGATl6jqqhbrGM0AboxsUsWDNH2vcjsBWgXT1H1ZheWGuBguIULN062RZpFRrVeVQNVViNc4gF0mIOdn/Q7qoIu64uzjsGPC7KDAD3CZIOgzQD3qybODK/MyznGQTnnlMwfUq7OfVrWoTEfLeZz235WrxyviF09VBc51VVgLLiJJLEZAjrObMO/flChIW9qNQibK60+Q+Dp3ZoUf9VVYC5msHrUK3u4gfN/7uZqI5OxbWw+wiuagt7zrd5v5bixEMf8v8QuEJVFeAuFXJMziD49WvO5fXNxWkuqyUanFgtmzn14yYEuJ+oCrxIZ6kiZ3HSrykVNJtYsffNmNvE4kOjRFWAJiXi0fSrUhGqsyj2K5L+Wsxzjy4DihBVgRc5VETsO3wUWbo4N5llujLGtKHFhJ6IqgBLRS6LNzeIM0cHC3XTHVEdrBmISVQFYN+6piicram8QnGiKvAuFye0P/ogq+6zS4sLaKopaIioCrDh+t3iwZ0erDk9+al8myoqnrBbjOzQBFEVeIuaYeK+JBdheqnWc+rXlLwNTYbIRFWA/8m5pT3/8nHkSluRaBV5AYsTRuERoirwOgUzx7omN/2kyxjX5ULlk1ahvj9PNwDgAYs0+euxmb8snnffYoJZLMK5dyjVmKdkroTFIN1SkyG0+LWB+kRV4EUKRsz0VADxY5yc9JU/pcP05bHqoCZRFWjYiUSYHml69A3rR9Lr1dBDn/WrAfGz+B1qrnzg66XdDQANJc4Tw3/rL92JT+x4WDOU4rYqgJfqOyE9UvCu/InwBqIqADzAWALIIaoCQFzT9GeiLe/ktioAiGg9W8X0E4MNeA9VVQAIJ11DVWHlPVRVAWhSQzMYXLFYRiGVtxFVAWjDOqW1klZP58v10pnblbcxAAAAHrMZtXPCqMDKS6iqAhBdE6XThNbbDw9SVQUAIChRFQAiStdiVWp5CVEVACIyGhU+oioAhLU56cEjLYGntDHNBwC8yiKSLuaocuzmPURVAIhrs4zq2M17GAAAAHFtPgXgkZbAI7qtqn5PQ48u3fqCy5U/X+h1VQMA3KTPRwCcGHW++SfTD4ukzHPpGQDgtTqMqtdz6jdNzn946DHTp5+SBwDAXG8DAM5dwU/XOzNrq7svK1ujBQDontuq9uudh+qpiRdLqAAAh3QVVa9cZM/JkYn3P/TRBgMAAOToJ6qeu7yemRpLFUQVVgEA8nUSVS8OA5UgAQAC6iSqfkmcAAA96SGqri/i35dZ09OvAgBQUPNRdfPSf2Z2LBsx1XQBAMpqO6rWnKm07EcoxAIA7Go7qhbxSDVUCRYAYFfDUXW3pCoOAgA07c/TDTgp5wL6MPT22NhNRcYSXFlRL1nPAEB9TUbVRTjLf4jUZqLKTFrftwqYyXablF7AIkFTWgUA7tDkAIB2U1HAu6mKrMx2t0hCwI0FAG/TZFX1s5eNas4MMP/QzI/rMth1SbUY4Cl6YL6arKpm2v2K5+8D6QKbfQkAinvk6tYwDK6qhdJzVM2X+aXMGRVaojmE4AwE4FlP9cP6/1DeHlVLfR1zUmzYG7MAAGJ6e1Sd7E4jkBkxXTh4M5seAMpq9baqgsZx/CaMxc1YR2PH9D6Jv1VSbc6hcf22LwCUpaq6YV0Zzb+1X1jpia0JAM/qs6o6L3Bmvn769/oPj+YV+QYAoIg+o+rnQl4UNFk4NAbARIAArdOTh2IAAAAAQYmqUJITcYCm6cajEVUh5dx0EABAEaIqAMB/1rUJ1Ypniaqww8UggDdzFHiWqAoAQFCiKmRxAQgA6hNVoTy5FgCKEFVhn3kAAN7D4NRQRFUoTzcHAEWIqgAABCWqds4161KOFkqteYBG6cBDEVXhgEP9l84OoDlGcEUjqkKuQ/3XOI76OwC4SFQFAGJxVYqJqArH6EABoBpRFQCIxQAqJqIqHKD3BICaRFU4zBgAAKhDVIUbCbUAJ+g8mYiqcMx3DEB+N6rDBYDT/jzdAOiZsa0AcIWqKhwmgALcSjfLRFTtnx3+Jq7sA9xEB8tEVOUSvQkA/XF0i0NU7Z/97Q5q1QAd08nHIar2z/52H6cBAHArURVqEGoB2qUPf5CoCicdLVfr6QAa5frkg0RVuCQzgI7jqKcDgKNEVThP+gSAW4mqAAAEJarCVfmDUA1XBYBDRFW45NAYAAMGAOAQURUKUC4FgDuIqnCVWasA4CaiKpSRGUDlVADIJ6pCAfmFVROsAkA+URUAgKBEVSjGxX0AKEtUhTJO3Fwl2gJAmqgKJR1KnwatAkCaqArPkFMBYJeoCsVInwBQlqjKVfLZQs4YAKNUASCHqAolZQZ3+R4AcoiqAAD/cO0rDlEVytPHAUARoioUdujivlALAAmiKtwiM4MatAoACaIqAABBiao9c3H5Kd9aqfUP0CiXvOIQVeEWRqwCwHWiKjzP6TvAwrMdowpCHKIq3EhnB9AiFYQ4RFW4ixGrAHCRqAohSLQAcaz7ZL30U0RVuFF+YdXFJoDI9NJPEVXhXno3ADhNVAUAIChRFWrIGQMw/FWhPQDQBFEVbmcqAAA458/TDQD+Y1QrACyoqkINYigAnKCqCvUMw5CTWedDBWRcAN5MVRUqMWIVAI4SVaGezLQ6zlRpF0As4zg+eGKvshCKqNqzCjvbs71Ji/SAAPGpFMQhqkJ0ci0AryWqQm0KqwCQSVTlEnmrAtehAHgtURUeoLAKADlE1f6pyQEAjRJV4RkKqwCwS1QFACAoURUeY2wGAKSJqvCw/DEARgsA1KG/jUNUhSflF1a//eYwDDpQAN7jz9MNAD7DMOxmVqMFgPd4/JzcY8PjUFWFh5kKACAafXIcoipXqfYBADcRVeF5JwqrzvgBeANRFUI4WpxWzAbgDURViOI7il+5FODz9Am5ckAcoioAwD9UDeIQVSGQQ4NW9aQAN1FVjUNUhVjy+0c9KQDdE1UhIhVT4OV0g3yJqhCOhwIAuHDEl6gKAEBQoipEpLAKAB9RFcJy8QsARFUITWEVgDcTVSGu3WEA86dbCbUA9EdUhdAMAwDgzURVaMCviuk4jlOWFWoB6I+oCtHJoAC8lqgKbUgPRV381rhVAPogqkIDdu+vWlReFWIB6IOoCm3wUAAAXkhUhWaolQLwNqJqz1TgurQ7zer3BbY+wEU60ghE1Z4pwvXHMAAAXuXP0w3gRgLN28xPTpyoAFwxjqPDaASqqtAYhVUA3kNUhfZIqwC8hKjaOVeB32zKskItAI0SVaFJOYXV6UTFGQsAjRJVoVWGAQDQPVEVGpZTLpVlAWiXqArNE0YB6JWoCm3bHQZgoCrACaoAQYiq0DyDVgHolagKPZBWAeiSqAqdSKfV4a+6jQKAS/483QCgBiNWAWiRqir0wzAAADojqkJXpFUAeiKqQm/S1/oXg1aFWoBNxk0FIapCn2RQADogqkKHEsMAxr/mrwSAmERV6JNBqwB0QFSFbu3OtDr9Q6IFICZRFXqWHglQvTkAcIyoCp3bjaTzoasAEIqoCq/gEj8ALRJVoX85t1gt5lsFgAhEVc4TaxpiQgAAWiSqwluk0+pivlUAiEBUhRf5hlEX+oHgvj3V062I0oyXE1V7dvc+pgLXqN3BAMO/KjYNAP4hqsIbGboKQBP+PN0AmjcMg/Jqi6aRAOvNZ4MCEISqKryX2ioAwYmqXKUC17TMtCrOAvAIURXeLietOiEB4BGiKmAkABCL7oiJqAp8PtIqACGJqsB/Ds23WrFdALyXyaqApV8TkBmxCkBlqqrA/3yfvPoxEgCAGJqvqv46oJ4o/yze6vo7XHkreFDi6QDwTnYHeErbUTU9qC6/W9l8n+mHme+Tbkz++0AE87S6+QVe7GK+5PRn0auvO/n0F37zoBB8Hzm0I4vv1NFwVJ33AuuD6Cd7L9qMpPM3z3mfRK6dfmWvpi1TWv3128R/oRubx5f1zxd+7TjdnNQdOs7CFa2OVZ13FoknmOePt1sfd0/sfu5EoTPfb6/RqzAZ/7rp9RHY2fNZVxW0GlW/Ejv/oav2v15c5E0+p6IzBCGt0rpz06td+bZPB4X5cWGeWcPuSkcHvN0awdvK99yn7ah6UU5nUapbscvRuvW+YI5Vulfw/tpzL4vsPce1xMZ6z0p40Kuj6tfFu6Y66G4g05RW50UjPTX0JM4eHefwGmedvFOrt1VF+94cmm0gWuMh3zQhgG8yb3D6Lv70kLA4IeyXxA5erfF6GL5ajao1NdGtbGq02QQ3r606lvBCoe7inzcmPTv40bnD0zt4kMXnDbodALCb0urHODs2PZkH1qnO6uyI/oz/mn4e6tu+ufctRpYnfguR9VlVzb858WJ8tKvzZosLDk7G6El6Zpiwdy8sJpzZfGzB7mzfiWuJjy8gL9RtVfVT8cAZ+QgduW10IP7kO3CfzAdk1LGeG+vXC/Lvhgy1gA/Svz2rw6qqr9Tke2b8tj6F+sbZU1ifbgvvle78y6auaPcwpIujiWU8UVh9224ebVu/UG9Rtc68xOsPfWrXTU/21v2T/YhjXD2F1ReM1wp12lawJRIbj+gqqj6SU/NV3snno5ESL4i5rmiRkQA8Kz25Up2+LqcCF2QfybzsNr0mSLN5oX6i6n059VzlMvEnl1uU+27CKPWZeBUakthPNw9wdmrq6+G2qvllR3sRPG5xDzK0pc4Tgx2tIFM/VdXPzXu+bgXyrWuryjP0JOcqf/BveH4Wd87Js5qvql6sp5baA+3JsDCfx+p72P41lTqEsntZIH3cyRmX1YrFsrx5t21rw3Wm4apqW/cadzls1K7LrkVafbo5cEzisaWH/nb+k093x4I3ODHhF6U0X1X9XJgVL+dluxEz531EOl5uHlifbgvsWz9DdfHVTV8ZWP/tTfdU1NyhXp7G9F0ParWqWmSfLzVv+XxGyYuhtri7x+/ae0mb9q9EWl1/S7u8CkFz1iMB8r+Tv0YRNPet1s9/RTu4v0p7UfWOfWbzuHguDb9ql37VwnLOeqxb60dumnP9O3axJnLx09Nvfrrakv+3dlKe1V5UXchMSznzxl0JXrsjmezq8JUzlZX9BTKld5Yrv4Ugmo+q16VT5qE9ebMuqy+ATZkjZwB4s/ai6k2HtDve1tEX0hYDWA1aBWChhxkAgKbNhwQkZgkwgQDAC7VXVQX6k/NEK7VVgBdSVQWiWDzg6unmAPxHj/QgVVUglnVaVU8FeC1VVSCi+dOA0gNYKzYKgNpEVSCuRWDdfEHdFgG3a+4UtLkGt0VUBaIzhhVexSkoc6Iq0AaBFV6iuR1ctr6VqAq0ZD0J6+LZyIsg29wxD4hGEn2WqAo0Zvxr+sn8oVaLXwHNsQszJ6oCrcqZJcAxD5rjYghz5lXlEjmAx63Tqq8lQDdEVaAT4zhOw1XnP3yuRQBcJapyyTAMogBxrAewHoqtvs8A0YiqQJ/Szw5I/wkAQYiqXOLQTnzr2Vh9bwFaYQYAoH+Lwup6QtZDdxy7PRleyI7/FFVVoH+bZdTTT71SlAUWjHS/j6gKvNRiMKuJroAEncNTRFXg7abBrJ/ZNb5p6ivHJ2CXjuI+oirA5/NvYN38x/xlE1f9AG4lqnbLAHA4YT4qYJ1KP6txAnIqwK1EVYAN6wy6foLrr1cC/XEJ5SkmqwI4YLPaupj9CuiMkPogURXgH+tZVxMvzomt6/8eakluuwF6ZAAAQMoijH7/O//h5pDWz+9Iml+emWYhAHgtURXgHxev9M3/fLOYeuj9XXaEVhjMehNRFeAuiTkENl8AwIKoClDGvKayzqOLWa7WsXUueISdllQZCSb2hZuIqgBlJAawrn+SHoeaU3nNr85+A2ViBMJ9idMTv4CLnBB3q8IRQkEF7pMIsvY7+hbzDMch7ymqqgAR/ZpY4LNKsQ6fQMdEVYAGbObRxIDXgvlVMQl4kKgKEN18sOn8fqbNu7h+/eSX+ZvM7wDbbEBinOt8LGzMC7h3kOPhbqIqQHS7zx3Yva0q87fpGQk2P2X6YfquMgqSj8Oyae4gqgJ0bvfYuTn4NfNhsC8/MD+y+G9Y529YRjKJqgBvly6Xzh0daSBw8Cq+8HcQVXtmn4FuBJl1P5FfN8e5nhgy+1nNVZTzTNrM1bK7Gs89/zbzzrZEI4/O6uBCM+8hqnJS/hEIuG5zSGgQ+aNUM596kPOTdbTNfOfpv5tp79zqXc8sdtMMDBfvVzvRsPxPPJHyBW5y+JZ06+47cN9zhy/wiIvnwyd6p+67tVaiYcx2dv/1CEtVtWf2KKBdmT3Y4pr+vGh66LPO/eHu25Z6qyKitQdyiKoA1LMeh/prTOr6gvJmWWsxNCIx5vVXYxKvXMTfo66nXuEyjivfBK4QVQGo59CMsLsv2Ey6n1V+Pdqqxc+vjA2dv9WJoHNrNqqQvX59xOZQ40VtW0zny1ehW3fv50btAARxsfp7dObdOgIeXwToR6iqcp49FiCCi9XfzPevQx2Ehf97ugE0zKgdAMoSUlkQVQF4u2EYds+9L56cRz63/7ZtsRJ2n+bwa4mGf5VuLK8jqgLAvovVvqeKhYlAOf17Gj+Q/zSHnBdkaivOttXaPhirynku0wB96Lg3S09ucP19ar4z76SqCgBAUKIqAEAxBgmUJaoCAJQhpxZnrCoAQBmG3hanqgoAQFCiKgAAQYmqAAD7XNx/hKgKAEBQoioAAEGJqgBAFCZ7YkFUBQDIJUxXJqoCAFG4dYkFURUAIIskXZ+oCgBE4fI6C6IqAABBiaoAAAQlqgIAEJSoCgBAUKIqAABBiaoAAAQlqgIAEJSoCgBAUKIqABBI/CdCeU5BTaIqABBI8CAYP0l3RlQFACAoUbVPwU9JAQByiKoAQCA9XWFXObpOVAUAAhHvmBNVAQBu0VOF+CmiKgAQSBPxTum3GlEVAICgRFUAgAOaqPt2Q1Ttlh0JAGidqAoAQFCiareM+AYAWieqAgDcReXoIlEVAIhiHMcmsl1+O906cpGo2qcKO0YrvQkA3MRxsAJRFQCAoERVAIDDXNmvQ1QFACAoURUAgKBEVQCA2w3D4DasE0RVAIDbGdt6jqgKAHDSoUKptHqCqAoAcIboWYGoCgBAUKIqAABBiaoAAOe5r/9WoioAAEGJqgAAJ7mz6m6iKgAAQYmqAACXGK56H1EVAOA8YwBuJaoCAFQ1DINCbCZRFQCgKoXYfKIqAMBVR6uk0momURUAgKBEVQCAS5RI7yOqAgAU4E6pO4iqAAAEJaoCAFxlDMBNRFVOcpkDABYcHIsTVQEAClBYvYOoCgBAUKIqAEAxxgCUJaoCAJRxYgyAaJsmqgIAlCR9FiSqcp7x4wCw8D045qdVB9M0URUAoCTpsyBRFQCgPMMAihBVAQBukZlWh7/ubk+LRFUAgMIOjQEYx9GYgV9EVQCA8txfVYSoCgBwi3Pp00iAOVEVAOBGh6KnnLogqgIA3GUaBpCZQY1bXRBVAQBuJHpeIaoCANzrWyt1cf8EURUAoIZvWk0E1vmvzLT6JaoCAFF0H87SQ1fnQwUMG/gSVQGAKN6Qz6Ybp3YfUvWGtbFLVAUAqG1+p79r/Ql/nm4AAMBLJdKqkuqXqAoA8LD1U1jTddbrQXZ3sGwQoioAQAiLpDgMwxRhF3NdvWfAgKgKAETxngSWY0qu33/klDzzn4l1pWE1iaoAAKF9A2hOvmwog2YSVQEAQusvgOYzWRXnuUwDQFnru4t4OVG1Z3Z1AOjVS47yBgCUtP7SPFixTzxoeHHO+ubLCgDQlsWRvfujuahaxq8zm/xx0DX9+pYDAMEtQkX3QyZE1cLmj52YfjjNi1bTxZScMzNwxzsGADQkWlGsIFG1gM3a++Isp35aXcwVfOLPCzYG4FaPVASgdeuqVuauVPMZsKLqVekxIg+W5ZU8gfeQU3mnxeOsPnlH/0Qxa3dXqp8uRNUy9JIAQCtO55b6gUdUrWG6Gb/dRNv9DYYA0JzFk1c/PR6mRdVLXnKR/SWLCUAQ/eWt4NYFqfmh/9nN4REABeRvwkYz3zjzdFsAgPPWUSTnJ98fpqfmvImqKsAbNT0kCThtvePn/ORz7WasK0TVSi5OHVXf7jwUbS0OsCCnAkc90m8YAMC23a+j4xwAvMSD9SlV1fNiPjR17mLb0n+uqgoAb/DsEV9UBQDgp2ercqLqVeceQVbkc6+/JnJJGABAVK2qYDR0nxMA0D1RtR+L8GomGgCgdWYAOO9oEBQcAQAOEVXrcYEeAOAQUbWA3Qwaf1orAICARNXbKaYCAJwjqpYhjwIAFCeqXjKO43RZfxiGdWCdfuLqPwDAUSarKkx5FQCgFFG1gHlhNfFbAAAOEVVLkkoBAAoyVhUAgKBEVQAAghJVAQAISlQFACAoURUAgKBEVQAAghJVAQAISlQFACAoURUAgKBEVQAAghJVAYAohmF4ugnEIqoCAFGM4/h0E4hFVOU8HQoAcCtRFQCAoERVAACCElUBAAhKVAUAIChRFQCAoERVAADOqDAPrqgKAEThEQANqbOxRFUAIAozdjdkHMcK20tUBQCiUFVlQVTtk10dAEib0sIiNgx/HXqTm4iqfXIBBQBIm9LCPDasY+vir3J+UtCf+94aAIC2LKpd6+LX7gvKUlXtkwEAAEAHRFUAAD7r8anzwaz5o1fLElUBAHo2j5jDzO4f/rq4XzOzGqsKAPA6u4NQE7+qefe2qAoA0LN5smxujiADAAAACEpUBQBo1a+Bp7+m92+OqAoAQFDGqgIAtOrX2NPNJ1G1SFUVAICgVFUBAN5oPYw1YAlWVAUAeIvm7rISVQEAOrSbSgPWUNdEVQCATqTjaRPZdEFUBQBoRuYV/BZT6SZRFQAgov5KpCeIqgAA4Uw59SWR9BdRlTOau38QACL7dWB9eU79iKoAAA9KVH/mOfX7shcmV1EVAAjkJWlskVB3l/olq2VNVAUAqGqeU1+bQTOJqgAAlbhZ6qj/e7oBAAD/0/Gdu3LqCaqqAAC3e+19URepqnbLzgBAi7o8fsmpp4mqAAA3klOvMACAk+xyALArnVPXA3MdXhdUVQEAbrFbTxVMd6mqAgCUl3ndX1pNU1UFALiFGHqdqioAQGHp2WFNsJpPVRUAoDxDVItQVQUAKCnngVvSaiZVVQBCy3/M5u4rh2G46aGd5942+BNEh78yXxZ8caoxi2pZoioAoeUf8h+81frcOwdPM+Nfuy+r056GWCcFGQAAwIvIEHewVidKy8WpqgJldN9BJxYw89Ln7svCrsN5y+eN/LVELgfzZoJ7WaqqQMowDJndbru98/VpuvNXUc6wv++75a/54o5+dOL131+t5+VZrIf5zzf/vflxv97kJuvvyXzpch6b+WtxFj9ZvGe1gY+JJ3xObbi7Ma2f3rTe/pge6wq51d0HuQcPogALHdzFsk60i0S+Xrqcpd5M84sOfHOCz8Wbb55BFT8Q7Mb6+Dr4KgYkcPSpwt4irQJwh3aPL6LqHYxV7dPm1bHiXOl4XOVNUH+Lh/2OzQduLgZlrifuyRmiGnZJE1psM9xNTi1OVO3Z3TuMHfJxNTfBI7nk3ALm39Oz+bLdlBn2JPDQImd+yuJli5urfmX0X3/1+RHud1+zaPxum9cNOLdWp7Yllmj9QZur4tdb0Rnbt7hWa+zsGgxXhcsGl/MestnDZG6OKSssri/tDtBMfHS+dVKZj/I89Oabyzusho3OX7a7iop/pddLNGyNhd1s3npZfr1nK9pteWTWabdEVYAXSnfOTXTdTTRyrdFmx2eyKnjY5tWi9Jw+m0WL9B8e+m26tes3+VX9yv/oX6+8fq9xHwePPpaCOtJfFV8kmiOqQiDro8jmcWXxw5ykmP/bxF8tHrF4bp7R3UuT61eeHvuVHl/YyjF7PZTz61eOX19vXf/J5ov7U3bpFlerf128rt8wIjBE9T5v4xsCAAAW50lEQVTO1LtlAACwq+/MlLN0mxcl7tb3ar+o0ZXjmHgfVVWAfRFKJnccCA9NIH/rZ90h5xMfiRcyDeQTVeG8X4M1M4djtngWHiGxvVbrKz94+3+N/47ppq6j+IJXeBZrBPG/ME0TVYGf0v1v/pxB+X+y+245j5o89EHrt5p+8sil4ce1cga1HjB6/Q2nf9+xBso2uJVstJhWtmNN7DWNaqNL4gRjVZkrdZyw0aFXQXr1FquwOasuyOptkaoqdOJQGH3JVTkgX5zeIE5LiEBU7VP3l1qelQh5FYrZma/cbYaDAcB1md2yLvc0URUOq9Pj5HR/+j6gP81dK2+rtc0RVTmvud6kgrKPDi/ytgDQLlEVniGYArTOcLsKRFWobbNrE08BYE1UhRrKzjAKAC8hqsJdVE8BupfzdGI9/xWiKhSmgArwBgaq1iGqQjGLbktCBeibGawrEFW7Zfe4Ln82rnc+LB7g5UzaWIGo2i37Tx1CKgDcR1SFn3IGy+e8EgA4R1SFM6acKqQCwH1EVd7uxJRSJh8BeDkHgmpEVd5u6mgy+x3dEwAfB4JaRFX4T2ZIzXklAN1z+3Id//d0A6ANcioA1KeqCvtc9AdgwUGhDlVV2CGnAjDnkao1iaqQIqcCwINEVfhJTgWAZ4mqvM7w1+7LPnIqAD8YBlCH26p4nZz0KacCkOYYUYeqKizJqQAQhKgKAEBQoir8Q0kVgF0OE9WIqvA/cioAae6mqsxtVfAfORX4ZZ5O9BJQk6gKQOeOnoimy2bDMCTe6tffdhNwpwXsZokITlSFz0dJFfp19HLtZhS7XlWN3MmcSJ8xF4QuiaoAsLSIYpnJ7FfmCz66cRzHzBYGXxC65LYqCF3tAE7LeS5d2Y/7/mPdmUw/CRv1vi0M2zzeTFQFoENPpa5fJ709pVUn9tQkqvJ2SqrQpXEcv/v19I8cU1C7I1BO7Sn+zkXsLrvekkcYqwpAt65c1978q19BLecjwtZTF4TRBHm9PlGVV9PpAIekZ6qq2ZlM3ddupF6/YLOd6ZurWsnZ9EdUBYClzTAXJ65lXqxP/HkirSbiuBN76jNWlfdSUoWXODpdaDqoJaqY6YBY8C779Vxac5uvn/92d4WcS8BwB1GVM4Q8oKxh5tmWpHu2dNzM6RXL9pyb2XT+k8ULvi1PrOTNLOsJVTzIAADOyJ8vOqzW2w+dmfcqh3bPyuEp1In6bjM2U+yUVtOPh00nYKhGVZVX0/NCHInr14k/ua89iU8Mfq6bztO7YwAWyxh8YemeqirvJadCTPbNZx2apetVQtXU30NVlTdSJADq2x0nWsrF0q8o9ksTNfX+iKoAkOtXXW03hta/M+nKB02ZTB1xztp4hKgKAJ/PLJnlvHLxkym+pCcHaDTlqCPyIFGV13FaDGzavbybroyme5W20t6itTpMHiSqcl5bPS9AjumJTdNPFhO+5syfv+gemztDXszM+mBLQFTljOa6XYCcs+vF9K7r0JnzgIDFn99xVp8eGlvk/i09/IID31NMVsW7qATDax19vOrnVDr5NWi1+EOqEnP4p3+b8wiA+VtdaSdcJ6ryRjpfeJsTOfXQX135xDvePz3Dv5xKQwwAAIB3kUFpiKjKixhpBABtEVUBAAhKVAUAIChRFQCAoERVAACCElV5C/dUAUBzRFUAgH2KHY8QVQEAUjzp8EGiKgAAQYmqvIITYgBokajKKxhgBAAtElV5Bbf/AzRBR82CqNqnu3d1XQkA94k2aut71IvWqpcQVXt2907V0E4rWwNAi/483YDz0jnpUDSZv9W5TJNojJAUQUOpGuDlxnGM1mlHa8+rtBpVS31p1u+z+Mn1oGmUJADkC5gLA6bn92gyqqaLoN/fDsOwmw6n95m/cvFdzH+fzZdN75bzPgAAzLU3VnWeLzfD39FEuHj9+NfpFl5pDAAQjZLqg9qLqjnhL+dOvd3r8pkps9T7AAAxQ6FD+YPai6pfF780meNHMyenKPU+3MRwYYBWxOyrHUce1GpUvahUdpzGxRZoEwAA/2oyqtY8rUmE2s27sgAAKKXJqLprt1BfpJJ/4s8r119laAC4zvH0QR1G1ZiX4yt/y2OuhKfoYgC4wlH1QR1G1a8K6cQXtxW2FACnuafqWb1FVaHky5wDAEAHuoqqj9zn5DQLAMpybGVy14NVL9bzrtyxFPP7XbnAqZ66EPNbAcCC4xcLd0XVcRxrftuC59RJ2eblrOHEa4Kvq1L0egDQrrui6qdiEro1p+4GnWEYnsp86c99sGEAcE7lUhfxNT9WtU49tcib1wyOFfbzVnLwOI6tNBUAWGg7qj573T//Q7s8QexyoQB4loMLCw1H1es51f7QvWEYbGUAaFerUbVOPTVz1t90GHokKlUoM7uqDgDcrcmoej2n5vxh2Ygp2AEAHNVeVC2VIDOf55SOmNNvf11ofurqc4XPdWEdALjbjZNV3eGOeLR5lT//g+bTavz6q/5KqnIqAFBBY1F1IScwJWLibspsbo6qalqZ966VdgIQlkPJs9qOqrt2Y2JiGEB+xOwyjPZB5wLQloC5MFp73qaxqHpTKOwvawbc1Z/S38YFgPdo77YqAICaVD0eJKoCABCUqAoAQFCiKgAAQYmqAAAEJarSLXMgAEDrRFUAgG2qHo8TVemZ6UUAoGmiKgAAQYmqAAA/uUD3LFEVAICgRFX6NAyD82AAaJ2oynlhs6AbNgGgD6IqHQqboQGAQ0RVzlO8BABuJapynuIlAHArURUAgKBEVc4zAAAAuJWoynkGAAAAtxJVAQAISlQFAKIINbQsVGNeS1SlQzoXAIow1O1xoioAEIVoyIKoSp90dgDQAVG1T66AA9Aixy8WRFUAAIISVQGAKAzfYkFUBQAgKFEVAICgRFUAIAq3VbEgqtIb3RwAdENUBQAgKFEVAICgRFU6ZK4TAOiDqAoAQFCiKgAAQYmqAAAEJarSFTNVAVCEA0oQoiq9cU8VAHRDVAUAIChRFQBgg8t0EYiqAAAEJaoCABCUqAoAQFCiKgAAQYmqAAAEJaoCAIG47545UfVJnoQBAJAgqj7JiSMAQIKoCgBAUKIqABCI0XHMiar0Q+8GQBEOKHGIqgBAIG7kYE5U5QynmwD0TWIOQlSlK3oWAOiJqNotoQ0AaJ2oCgBAUKIqJ6naAgB3E1UBAAhKVAUAIChRlU6YPwsA+iOqAgAQlKgKAPAPtw7HIaoCAFGM42hAF3Oiap/u3tUDdiXOgAEoJdox7s1EVQAAghJVAQAISlQFACAoURUAgKBEVQAAghJVAQAISlQFACAoUZVOmAMPAPojqtIPTwEAgM6IqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQomqfhmF4uglVvW15AbiPY0oooioAEEWQmDiO49NN4D+iKgAAQYmqAAAEJaoCABCUqEonjCsCgP6Iqt0S3QCA1omqAAAEJap2K8h8HwAAp4mqAAD/UeiJRlQFACAoURUAgKBE1W6ZAQCAFjl+MSeq0jzjigCgV6IqTRJPAeANRFWa5PIQALyBqAoAQFCiKgAAQYmqAAAEJarSA0NXAaBLoioAAEGJqgAABCWqAgAQlKgKAPCTh848S1QFAPjJnbvPElUBAAhKVKVtrssAQMdEVZrn0gwABTmshCKqAgAQlKgKAEBQoioAAEGJqgAABCWqcob77gGACkRVAACCElUBAAhKVAUAIChRFQDg83EnRkiiKgAAQYmqAAD/8VTVaERVAACCElUBAAhKVAUAIChRFQCAoERVAACCElUBAAhKVOUk03kAAHcTVQEACEpUpWGegAcAfRNVAQAISlSlbYbMAkDHRFUAAIISVQEACEpUBQDY4ObdCERVAIANboeIQFQFAKIYx/HBWuazn84mUbVPd+9sQXbmIM0AoA+OKQGJqgAABCWqFuaErCZrGwD69ufpBpT0DS5HB0Gv487FYdTzNzQiGwDgtH6i6okC268/mX6eGTQTH30uPdO3YRh8JQAgRycDAK5fCB7HcZ0eTrzt+K9SzTvKlXE4wY4DEE0/VdWjNkun839nHrRi1k3dGg/0xLWIsGyayPrYOj1UVa9kst1NeDHwPVhYBQBoXQ9R9YScUmjOiUip9yGTxA8Ar9J8VJ3C4n2JsMV41GKbAQAW2o6qdweydPw9+uni43VK1ADwKg1H1aNTSq3/sIiY4Slmq+7wniUFoAKHlWgajqpfp79SNb+LvvcAACe0GlVjThEVh8EGAEAHmoyqEXJYhDbQIt+csGwagIDuegTAoupZcBLa00NU7xChDUEsDvOH1syViLD+2+/jD+7YNJtve67xbaWixfTA3/82ugjXPbLg84d6zNd/zS6o1IIvnrSSPy0g8E53Pcag1Mz5v9558wWZffehLv7Xi48eJ4ofV0L13R6OVUoiCkcLiBVCUpyFnTs643LMpSBTu53br5P2/DP5mgv+a2eZ1n+1s7JnN/eJE7lfTtT1bn2g0hU1ik/Tf+drYdqLNr+aiXdOvKZ+VM18nzsqwYtj4a9HwlY7WEYrMP9a5NPt3Py6nng3w6zDsmk2RbiQld+3z5PNHWXg+8y78SDh+OjR7dcxnb7VKFs01C+f2wGuFEQTffSJqFr5Ul1DW/ZtbJ2YRNXI7DVhtbJp1u0sXtG4ruw4n0OnbZE34l1jVXuyuf2cOwLU0UoYIrL1Vyjgl2rRpIstrD984iYtRdWyV/YBaIW0Cq/V5GRVCXWGDx8iQAMAnNNbVK1/Ud4wAACAm/QWVXOKl5l3WRaphiqpsuDcJjK7KtCNbg43vUXVUorcLtfNtwRewj4LEE1Lt1UVNN0Wt1n1zJ+I6vs+pvsGALjDS6Pq59/Zporky4AztAHAfVRnqOC9UfWzVwfNjJiLN5kPhBVSWfOtALphinEqEKf6JCgDwJt1c2O3QAMAQFBmAAAAIChRFQCAoERVAACCElUBAAhKVAUAIChRFQCAoERVAACCElUBAAhKVAUAIChRFQCAoERVAACCElUBAAhKVAUAIChRFQCAoERVAACCElUBAAhKVAUAIChRFQCAoERVAACCElWhpGEYnm4CAPRjGMfx6TZAwzaz6aHd6le6tW+W9V3P19fqMOg2r1p/561SiCZOXxelHVyk668vXUDNXP85VVibsogTUbXIJmbh1h3HRilosZJtmracDpqJPfSpjSiqNm8369jEd5hW+3r1zrdIeuWnX5n4CI46sTKdRdxh8zt/NBLp9O5Q5Atvr7nodLdf6rx6sYdev2xYxJ/Kn0dZv7KOEZO32u0UDq3/X7v99D5xrsK8x+4Bw6Y54dda/ZVZD73J/Fe2y1G7J9hHv/CLlzkk5SiyljaTQOaGW+9cQXKF26p6MI7juus/1Ptzwnq1H6L8UM3pXcD6v0ORvWbzTWyvc6axMYk+7VzQmf+5Q1LaldWSOAk8sdqvfAduIqo2LP8qmK6hoEMR05XKx5348juLuEPBtZp4mU7vqFIrKufKtb1m0zAMd+TUSeZOkT+av/7OJao2L/3F0jU85bvmr69/W/CKK+N9rfk77K5Vu0xllVfX9+OcSFRW6hTuqZ1LVIVjMjNo2b5Yz37Frd2rTVONVX2HzLWaWXJznnDFlUFl1TbNI5tYVG3V0V5bL19Q5ZzKOaUmUv3FUTk4u2GOmBd8XyU9SpiPGQBal/PlPnpDOqUkto4tcrdGr3O9xLkJO/NfrNM7YfPUzmp8iaMn9pUn2VBVhcJ07nGc6Extvltt3kEy/PVIk/g1IVH+GYVtx61UVeEWmbWfCi15IQfOaBKP01tkIzvFI+Z16CCzvpPjJX2dqioUM1WGdOsPmk8S+XRb2DbfNIst9ZJDbxNu3S42NPlEVShDzxtBza1gi+ebP/zm1+z9pkR90K+y96Ht4uTwKd2veVEVCuu+14CjXG2IbPFU1fXpxB1nEb4M5DNWtX9KFHfbfXz2dbr1HIuv+hSPzt0pksmmKajUnfs6vXyZj8kwqQJzlfs9VdW3cEC9yZWcmtP1Ozyck75HhDfQ6eU7NEvRiV/BFaqqUIbj4uPSm+DKQ1YB+Dx0QqKqCgVIP62wpWAhc6dIvOzobmU3LCs/Pmaez0cjqsJ5p28WybxNIWzH0bHvptld8zbNIZn7SMEhMcJQPvNmvEHTo8BF1bbZ7R9U7aZmB91H5OxcNs0hdVKmXvEmxta/Qcx+T1RtVU5Zzoz097neI8+34Oa76fTDsludlniAav60ne7sedCVr72tU1ypC3Q5m/XBzecpdm1L3yniPpI7LG75v9gFmFW7mkP5MrHv2K1O+zXP/KFpNBIvtmlO2F1p+fO7pbejrZPp6Jlw/hY8tHMtXv/s5jMDQCfmX6PiM0dyn/TISNvucTZNQetv+4nOavdp9ZwzDMvS1a9Ti19smkdMq32xBU9sgvQs1J/n+j1V1ealv462b3HOBBp17qp9nM66PxefnbHZ9dk6JxS/tuME74rT44vKhoFQXZ+o2pUKj00CoD+hosmbXR8K399gelEVAICgzAAAAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAABCWqAgAQlKgKAEBQoioAAEGJqgAcNgzDMAxPt+K8phsPryKqAnBM6znv2/7WlwJeYhjH8ek2ANCMKeE1ffiY59SmFwS6p6oKcEzr176v6COnftpvP7zHn6cbAFDViZR5NNZ8PyL/r3Ly36Fm353D+sh54zhOIwH6WCLokqoqQAilcup9gjQDeBVVVeBdNhPhHde176jVRSj+RWhDKQqrEJ+qKsB/HgkrbZUq+8tz0xK1tSHgPURVAPZJcsAjRFWAu3QT747eKNaWXpcL+iCqAjwWVrrJsn2wOSAgURVARilsvT6nyWhjrmqFVQjLDAAA/7sTvKajn9hWnJruqZ8v5jytzhfn16rYXeTEOmxrdQG/qKoClC/1jeO4DmqNOr0Ii8d6jX/N3zb96K/0R+/+toOVD6iqAtwrPWdnTkH3+5p25/5cNHs+m+mv1+SnzPREuYcaKdpCQKIqwAMOpaLpxacvlF937iMy/2r9st3gmP6tuf2hGwYAANxlNyQVSVFho1hOw+ZDAm76iEMUViEaVVWA25Wq7YVNpUddv9q+Oyiim3UFL6eqClDbuRn135a9MpfX7VPQN1VVgBu5Wee0zLvNNl/8tlgPHRNVAe61SKuSa6bMuRGmf2+uZJkVWmcAAEANTZf9Hmnt0adbjTN3tguoSlQFqKfRkuqDzb51kiwgPlEVoJKXXJUulWsfWUt9bxpokagKcLtXBaBSC1vkuamNlrGBiagKUFWjsTU/84Wqqua/iVALMZkBAKANT92Y9dRDSnMenbo5Q63QCT0RVQFq+EarglEvEcgaLdxuyllp17PpuYcyABVUPUUGCKtyybCUzZRWfEHmn1K5sHoupx5tpKgKYTXZNQNQWcfTF8ipEJnbqgDYNyW5zkaCdrY40B9RFYAsvabVj5IqBCaqAnBYH2m1j6WAvomqAOSaVx9bz3kdj76FnoiqABzQQbCbP+mqg8WBvplXFYBjuol33SwIdExVFYB3+SZUORWaYF5VAACCUlUFACAoURUAgKBEVQAAghJVAQAISlQFACAoURUAgKBEVQAAghJVAQAISlQFACAoURUAgKBEVQAAghJVAQAISlQFACCo/weSWf5VTEfC6AAAAABJRU5ErkJggg==]]></Image>
<CoordSystem>
<General CursorSize="3" ExtraPrecision="1"/>
<Coords Type="0" TypeString="Cartesian" Coords="0" ScaleXTheta="0" ScaleXThetaString="Linear" ScaleYRadius="0" ScaleYRadiusString="Linear" UnitsX="0" UnitsXString="Number" UnitsY="0" UnitsYString="Number" UnitsTheta="0" UnitsThetaString="Degrees (DDD.DDDDD)" UnitsRadius="0" UnitsRadiusString="Number" UnitsDate="3" UnitsDateString="YYYY/MM/DD" UnitsTime="2" UnitsTimeString="HH:MM:SS"/>
<DigitizeCurve CursorInnerRadius="5" CursorLineWidth="2" CursorSize="1" CursorStandardCross="True"/>
<Export PointsSelectionFunctions="0" PointsSelectionFunctionsString="InterpolateAllCurves" PointsIntervalFunctions="10" PointsIntervalUnitsFunctions="1" PointsSelectionRelations="0" PointsSelectionRelationsString="Interpolate" PointsIntervalUnitsRelations="1" PointsIntervalRelations="10" LayoutFunctions="0" LayoutFunctionsString="AllPerLine" Delimiter="0" OverrideCsvTsv="False" DelimiterString="Commas" ExtrapolateOutsideEndpoints="True" Header="1" HeaderString="Simple" XLabel="x">
<CurveNamesNotExported/>
</Export>
<AxesChecker Mode="1" Seconds="3" LineColor="6"/>
<GridDisplay Stable="True" DisableX="0" CountX="7" StartX="0" StepX="10" StopX="60" DisableY="0" CountY="5" StartY="-400" StepY="100" StopY="0" Color="0" ColorString="Black"/>
<GridRemoval Stable="False" DefinedGridLines="False" CloseDistance="10" CoordDisableX="0" CoordDisableXString="Count" CountX="41" StartX="-9.3811" StepX="2.33617" StopX="84.0656" CoordDisableY="0" CoordDisableYString="Count" CountY="19" StartY="-449.222" StepY="49.3522" StopY="439.118"/>
<PointMatch PointSize="48" ColorAccepted="4" ColorAcceptedString="Green" ColorCandidate="7" ColorCandidateString="Yellow" ColorRejected="6" ColorRejectedString="Red"/>
<Segments PointSeparation="25" MinLength="2" FillCorners="False" LineWidth="4" LineColor="4" LineColorString="Green"/>
<Curve CurveName="Axes">
<ColorFilter CurveName="Axes" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
<CurveStyle CurveName="Axes">
<LineStyle Width="0" Color="8" ColorString="Transparent" ConnectAs="4" ConnectAsString="ConnectSkipForAxisCurve"/>
<PointStyle Radius="10" LineWidth="1" Color="6" ColorString="Red" Shape="1" ShapeString="Cross"/>
</CurveStyle>
<CurvePoints>
<Point Identifier="Axes	point	1" Ordinal="1" IsAxisPoint="True" IsXOnly="False" Index="97">
<PositionScreen X="157.5" Y="780.5"/>
<PositionGraph X="0" Y="-400"/>
</Point>
<Point Identifier="Axes	point	3" Ordinal="2" IsAxisPoint="True" IsXOnly="False" Index="97">
<PositionScreen X="569" Y="780.5"/>
<PositionGraph X="60" Y="-400"/>
</Point>
<Point Identifier="Axes	point	5" Ordinal="3" IsAxisPoint="True" IsXOnly="False" Index="97">
<PositionScreen X="158.5" Y="445"/>
<PositionGraph X="0" Y="0"/>
</Point>
</CurvePoints>
</Curve>
<CurvesGraphs>
<Curve CurveName="50mV">
<ColorFilter CurveName="50mV" Mode="2" ModeString="Intensity" IntensityLow="0" IntensityHigh="50" ForegroundLow="0" ForegroundHigh="10" HueLow="180" HueHigh="360" SaturationLow="50" SaturationHigh="100" ValueLow="0" ValueHigh="50"/>
<CurveStyle CurveName="50mV">
<LineStyle Width="1" Color="1" ColorString="Blue" ConnectAs="0" ConnectAsString="FunctionSmooth"/>
<PointStyle Radius="10" LineWidth="1" Color="1" ColorString="Blue" Shape="1" ShapeString="Cross"/>
</CurveStyle>
<CurvePoints>
<Point Identifier="50mV	point	65" Ordinal="0" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="158.75" Y="430.263"/>
</Point>
<Point Identifier="50mV	point	66" Ordinal="1" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="171.979" Y="430.893"/>
</Point>
<Point Identifier="50mV	point	67" Ordinal="2" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="190.248" Y="430.893"/>
</Point>
<Point Identifier="50mV	point	70" Ordinal="3" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="190.878" Y="336.399"/>
</Point>
<Point Identifier="50mV	point	68" Ordinal="4" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="190.878" Y="406.325"/>
</Point>
<Point Identifier="50mV	point	71" Ordinal="5" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="192.138" Y="289.782"/>
</Point>
<Point Identifier="50mV	point	76" Ordinal="6" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="192.768" Y="114.023"/>
</Point>
<Point Identifier="50mV	point	69" Ordinal="7" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="192.138" Y="376.716"/>
</Point>
<Point Identifier="50mV	point	74" Ordinal="8" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="192.768" Y="174.499"/>
</Point>
<Point Identifier="50mV	point	73" Ordinal="9" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="192.768" Y="207.257"/>
</Point>
<Point Identifier="50mV	point	72" Ordinal="10" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="192.768" Y="249.464"/>
</Point>
<Point Identifier="50mV	point	75" Ordinal="11" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="193.398" Y="134.182"/>
</Point>
<Point Identifier="50mV	point	77" Ordinal="12" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="265.213" Y="114.023"/>
</Point>
<Point Identifier="50mV	point	78" Ordinal="13" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="271.513" Y="131.662"/>
</Point>
<Point Identifier="50mV	point	79" Ordinal="14" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="282.852" Y="163.79"/>
</Point>
<Point Identifier="50mV	point	80" Ordinal="15" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="301.121" Y="202.217"/>
</Point>
<Point Identifier="50mV	point	81" Ordinal="16" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="321.28" Y="233.085"/>
</Point>
<Point Identifier="50mV	point	82" Ordinal="17" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="338.919" Y="253.244"/>
</Point>
<Point Identifier="50mV	point	83" Ordinal="18" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="360.337" Y="272.773"/>
</Point>
<Point Identifier="50mV	point	84" Ordinal="19" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="396.245" Y="296.081"/>
</Point>
<Point Identifier="50mV	point	85" Ordinal="20" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="430.263" Y="308.681"/>
</Point>
<Point Identifier="50mV	point	86" Ordinal="21" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="472.47" Y="318.76"/>
</Point>
<Point Identifier="50mV	point	87" Ordinal="22" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="515.938" Y="325.06"/>
</Point>
<Point Identifier="50mV	point	88" Ordinal="23" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="545.546" Y="328.839"/>
</Point>
<Point Identifier="50mV	point	89" Ordinal="24" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="586.493" Y="330.729"/>
</Point>
<Point Identifier="50mV	point	90" Ordinal="25" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="640.67" Y="331.989"/>
</Point>
<Point Identifier="50mV	point	91" Ordinal="26" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="684.767" Y="333.249"/>
</Point>
<Point Identifier="50mV	point	92" Ordinal="27" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="728.234" Y="333.249"/>
</Point>
<Point Identifier="50mV	point	93" Ordinal="28" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="734.534" Y="352.148"/>
</Point>
<Point Identifier="50mV	point	95" Ordinal="29" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="734.534" Y="418.924"/>
</Point>
<Point Identifier="50mV	point	96" Ordinal="30" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="734.534" Y="433.413"/>
</Point>
<Point Identifier="50mV	point	94" Ordinal="31" IsAxisPoint="False" IsXOnly="False" Index="97">
<PositionScreen X="735.164" Y="384.906"/>
</Point>
</CurvePoints>
</Curve>
</CurvesGraphs>
</CoordSystem>
</Document>